The 17th ROK-USA Forum on Nanotechnology

Highly Reliable Organic Non-Volatile Memory Devices Based-on Hybrid Films via iCVD Process

Dankook University

School of Electrical & Electronic Engineering

Prof. Min Ju, Kim

Contents

- 1. Introduction
- 2. Hybrid Films via initiated Chemical Vapor Deposition Process
- 3. Resistive Switching Behavior of Hybrid-based 2-Terminal Devices
- 4. Charge Trapping Non-volatile Memory Devices with Band Engineered Hybrid

Gate Stacks

1. Introduction

✓ The dielectric is a key component that determines the performance of flexible electronics

1. Introduction

- Need to develop flexible high-k dielectric materials
- Demand for the use of a new process, called initiated chemical vapor deposition (iCVD)

- Karen K. Gleason (MIT) who is Mother of iCVD process
- Prof. Im adapt iCVD process into Korea (2010)

✓ The dielectric is a key component that determines the performance of flexible electronics

Process Scheme

Synthesis of AlO_x, HfO_y, ZrO_y, and TiO_y contained hybrid dielectrics with systematical comparison

The oxidation reaction between the hydroxyl (-OH) functionalities in the monomers and precursors

 \rightarrow Formation of metal-oxide moleties in the polymer matrix

2. New Chamber

New Geometry of iCVD Chamber

Geometry of New Chamber

Large-Area Scale Deposition

 New geometry design of iCVD chamber for large-area, uniform, conformal, homogeneous deposition of hybrids

- Dual shower-head structure module
- Evenly divide and spread vaporized sources
- Prevent non-surface reaction between sources
- Covering entire 8-inches

Macromolecular Materials & Engineering, 306 (3), 2000608, 2021, (Journal Cover)

2. High-k Hybrids

Electrical Properties

ACS Applied Materials & Interfaces, 2018, 10(43), 37326-34334 (Journal Cover) ACS Applied Materials & Interfaces, 2019, 11(47), 44513-44520 Advanced Electronic Materials, 2020, 7(4), 2001197

3. Resistive Memory

Proposal of ReRAM with Hybrids

Resistive Switching Behavior of Hybrid-based ReRAM

3. Resistive Memory

Conducting Filament Modeling of H-ReRAM

- ✓ Bottom-gated OTFT-based CT-ONVM device
 - \rightarrow Blocking dielectric layer (BDL) : Al hybrid (Wide E_g, high-k=5.0)
 - \rightarrow Charge trapping layer 1 (CTL1) : Hf hybrid (Narrow E_g, high-k=7.5)
 - \rightarrow Charge trapping layer 2 (CTL2) : Zr hybrid (Narrow E_g, high-k=9.0)
 - \rightarrow Charge trapping layer 3 (CTL3) : Ti hybrid (Narrow E_g, high-k=6.0)
 - \rightarrow Tunnelling dielectric layer (TDL) : pV3D3 (Wide E_g, low-k=2.2)
 - → Channel : C13-PTCDI (n-type), pentacene (p-type)

- High Band offset
- > E-Field maximization in TDL
- Charge trapping efficiency enhancement

Program(PRG)/Erase(ERS) Behavior of CT-Hybrid-ONVM

Ideal transfer characteristics with hysteresis free and low-voltage operation

→ Advantageous in non-distorted Read operation

✓ Incremental step pulse programming/erasing (ISPP/ISPE), PRG/ERS speed, Endurance, and Retention

Advanced Functional Materials, 2021, 31 (41), 2103291

4. Charge Trapping Memory

Retention Characteristics

✓ W/o CTL \rightarrow Dramatic charge loss along with time, W/ CTL \rightarrow Prevent charge loss to maintain V_T

✓ Retention properties in high temperature condition (for calculating trapping density in CTL; next page)

ightarrow Deep electron potential well, Shallow hole potential well

 \checkmark No difference in retention between the pristine and the strained condition

Advanced Functional Materials, 2021, 31 (41), 2103291

4. Charge Trapping Memory

Benchmarks

Advanced Functional Materials, 2021, 31 (41), 2103291

Thank You for Attention !